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Abstract

Stochastic approximations with constant gain coefficients and dependent noise

and nonlinear or even 4discontinuous dynamics/ have many applications in control,

automata and communication theory. When the gain coefficient is small, an asymp-

totic theory is developed which gives much information on the character of the

paths and errors. The method involves both taveragingd and 1'stability' ideas.

The ideas are outlined. An example which illustrates the basic ideas and tech-

niques is given.
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I. Introduction

Several quite powerful methods are available for analyzing asymptotic prop-

erties of many kinds of stochastic approximations with gain sequences which are

either constants, or tend to zero. Methods for the first type of gain sequence -

examples of which abound - are much less well known. In this paper, we develop

a method for such a problem, based on "stability", "averaging" and "diffusion

approximations via weak convergence theory" - ideas which have served very well

in many other areas. The techniques have great power and applicability. The

general idea will be outlined and a simple example dealt with in detail. Despite

the simplicity of the example, it well illustrates the general approach, the kind

of calculations which need to be done and the type of results which can be

expected. The example is used simply as a vehicle for explaining the main ideas.

Nevertheless, only the surface of a large subject will be touched. There is

much work on the problem (when the gain sequence tends to zero) of the asymptotic

properties of stochastic approximation via the study of the stability of an assoc-

iated ordinary differential equation [11, [2]. The local asymptotic behavior

(near the limit points), on the other hand, is obtained via the study of an assoc-

iated stochastic differential equation (as in rate of convergence studies Ill,

[31, [41). Here similar intentions are pursued for process with constant (but

small) gains, state-dependent noise, and perhaps discontinuous forcing functions.

We are concerned with asymptotic properties (n - , then e - 0) of a sub-

class of vector stochastic difference equations of the form

(1.1) yn = Y + ch('Y &') + g CY', 6 + o(c)n+l n n n C n n

y C Rr Euclidean r-space,
n
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where h and g are not necessarily continuous everywhere and {} is a sequenceqe n

of correlated (and perhaps {Y£}-dependent) random variables, for each c > 0.
n

Equations such as (1.1) occur very frequently in applications in stochastic con-

trol, communication and automata theory. Often the g or h are indicator

functions; i.e., the iterate YC moves "left" or "right" by c, depending only on
n

whether some event or other occurred.

There is a vast (stochastic approximation) literature on (1.1) when e is

replaced by a sequence c n 0. But, very frequently in implementations ofn

stochastic approximation, E n is either held constant or else c 4 E > 0 as n ,n n

owing to the desire to track changes or for the purpose of improving robustness.

Consider a particular case of (1.1), a scalar Robbins-Monro procedure of the form

(1.2) X a - C sign[k(X )+E E
n1.2n n n

where En has a symmetric distribution, {& } are not necessarily independent (and
n n

might even depend on the iterates), k(.) is continuous, and there is a e such

that k(x) > 0 for x > 0, and k(x) < 0 for x < 0. In particular, suppose that

for x > 0 (resp., x < 0), k(x) is bounded below (above, resp.) by an increasing

function which has a non-zero slope near the origin. We might want to prove that
P

X E 8 as n . c and E + 0, or even to get a good idea of the statistical struc-
n

ture of the tail of the sequence {XC-O}. Define Un " (Xc- e)/ er . Something akin
n n n

to a rate of convergence can be obtained by studying the asymptotic properties

of UE) - which, as we'll see, brings us back to a process of the form (1.1) with
n

a r term included.

There are numerous other applications of (1.1) - particularly to systems

whose dynamics are determined by "logical" criteria - where the movement is
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determined partly by the satisfaction of a "logical" criterion. Such systems

have not received much attention, important though they are. One very clever

approach and some nice applications appear in (5], [6]. Although that method and

ours both exploit "averaging" phenomena, our method is different. We are not

confined to finite intervals [n: cn<T] for some arbitrary T (indeed, it is the

"tail" which is of most interest here), and [5] and [6] did not explicitly deal

with a Fe factor in (1.1). The VEc factor always occurs when a local analysis

(involving U ) is done. When this factor is present the limiting determining
n

equation is a stochastic rather than ordinary differential equation. We concen-

trate on the asymptotic part of {Xc } or {uc}, for small E, often the part ofn n

greatest interest. One rather direct but useful method for the asymptotic problem

in in [4].

In practice c is often small. But, generally, it is very hard to get infor-

mation on what happens when c is not small, just as in stochastic approximation

it is hard to get information on the theoretical behavior when n is not large.

A main question is how well the theory for small £ predicts what happens in other

cases. Simulations on continuous parameter problems which resemble these in

certain respects indicate that the prediction is good for many cases when the

parameter c is in a "normal" range. In some cases, the asymptotic behavior is

better than predicted. Generally, the closeness of the prediction to the behavior

actually observed seems to depend heavily on the form of the nonlinearities, and

on the correlation structure of the noise, and generalizations are hard to make.

By concentrating on large n, we are effectively concentrating on what happens after

the "transient" period is over.

The techniques used here come from references (7], (8], (11], which concern the

general problem (1.1) (or continuous time analogues) under various sets of

assumptions. The emphasis in [7) is on the case where g , h are smooth, but

an outline is given of the method for the more general case. Reference [8]
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treats two problems in great detail, one arising in an automata approach to tele-

phone traffic routing, and the other a recursive quantizer in communication

theory. Our purpose here is to describe the general method, citing results from

171, [8] and avoiding duplication of proofs wherever convenient. As an illustra-

tion of the power and usefulness of the method, a detailed analysis of (1.2)

(for both the tail of {Xnl and {Uni) will be given. The development will illustrate
n n

the usefulness of the approach for other problems. The case (1.2) is simple (but

not triviall, but a very similar method of analysis is used in more general cases.

Outline of the paper. The first important result (Theorem 2) concerns the

tightness of {Un, large n, small 0}. By this we mean that there is an c > 0,n0.

whose value is not important, such that for each c < E0 , there is an integer

N <- such that

(1.3) lim sup P{Icu > K) = 0.
K- c<C 0

n>N C

I.e., {UC, large n, small 0i is bounded in probability. Such a result makes pos-

sible a detailed asymptotic analysis of {Uc}, since it implies that the "tails"
n

of {Xn1 are uniformly close to 8 in a specific statistical sense. To simplify
n

the development most details are for the special case (1.2). More general cases

can readily be dealt with in a very similar way, at the expense of a somewhat

heavier notation, but the simple case illustrates the main ideas and methods.

Next, we define a continuous parameter process U (.). The {N ) will always

satisfy (1.3). Let {I1 C denote any sequence of integers satisfying n > N and

n C as c - 0. Their values will either be stated when needed or will be
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unimportant. Define the process Ue (t) -- on [iEi+). Define y (.) by
n +i

yC(O) - YO and (t) = Y on [n,Cn+) (refer to (1.1)). The general result is0 n

that U C(-) converges (under suitable conditions) weakly in D r[O,-) to a Gauss-

Markov diffusion U() which satisfies an equation of the form

(1.4) dU = -GUdt + adB,

where B(-) is a standard Browninan motion and G > 0. If rl E fast enough as

c - 0, then the limit U() is stationary. All terms, conditions and parameters

will be defined below, but first, let us examine the limit (1.4).

For small e, the processes (X ,Uc } (or {Yn}, for the case (1.1)) have a
n n n

(perhaps long) transient period, before their distributions "settle down" -

especially if (X0-e) is large compared to c. We are concerned only with the
0

C
asymptotic part - after the so-called transient period is over; i.e. when U nn I.

O(f). We can get the variance of the asymptotic part from (1.4), since XE

n

UC+e. Also, (1.4) gives the local correlation structure of the asymptotic partn

of the process. Weak convergence methods are a very natural and convenient tool

for getting our results. The details of the derivation of (1.4) will be given

for the model (1.2). Very similar methods can be used for more complex problems

[7], [8]. Next, some comments and definitions concerned with weak convergence

theory will be given. Then we comment on the so-called martingale problem of

Strook and Varadhan (9], which provides a characterization of the desired limit

process which is convenient from the point of view of simplifying the proof of

showing that it actually is the limit. Section II contains the main background

theorems. For (1.4), tightness of {UCn, large n, small 0} is proved in Section

III, and in Section IV we show how to get (1.4) for the case of model (1.2).
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A note on weak convergence theory. Only a few comments will be made. For

full details see [10], or [i, Chapter 3, for a brief summary. D r[0,-) denotes

r
the space of R -valued functions on [0,-) which are right continuous and have

left-hand limits. The "process" U (-) is treated as a random variable defined

r
on the sample space D [0,-) and induces a measure on it which we denote by PE

r
(a useful topology, called the "Skorokhod" topology, is used on Dr; see [10]).

(Uc( ") } is said to be tight iff for each 6 > 0 there is a compact set K6 G Dr[0,O)

such that PC (K6  > 1-6, all c. U (.) is said to converge weakly to U(-) if U(.)

has paths in Dr [0,o), and induces a measure P on it, and for each real-valued

continuous function F(.) on Dr [ , - ) , fF(v)dP (v) fF(v)dP(v) as E - 0. The

basic result is: If {UE(.)I is tight on Dr [0,-), then each subsequence contains

a further subsequence which converges weakly to some process with paths in

Dr 10,-). Our job here is to characterize the limit process and to show that it

does not depend on the subsequence. Thus weak convergence is a substantial

extension of convergence in distribution. It is a tool that is extremely useful

in many areas of applied probability where limit or approximation problems are

of concern. Criteria for tightness and weak convergence are often given in

terms of the multivariate distributions of the processes {UC (-)}. See Section II.

A note on the martingale problem. This problem arises because in the weak

convergence analysis it is convenient to characterize the limit U('), whatever

it may be, by showing that it solves a certain set of equations which are known

as the martingale problem. Then we show that the U(.) of (1.4) is the only

solution to that martingale problem. Let x(') be the solution to the stochastic

differential equation (SDE)

(1.5) dx - b(x,t)'+ oc(x,t)dB, B(-) - standard Brownian motion in Rr ,
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and set o(x)O'(x)/2 = a(x). Suppose that b(-,-) and o(-,-) are continuous in

(x,t) and satisfy a uniform Lipschitz and linear growth condition (in x). Then

it is well known that the SDE (1.5) has a unique solution in the It6 sense.
t

Since fa(xs)CBs is a martingale, for any smooth bounded function f('), It6's
0

lemma implies that

t

(1.6) f(x(t),t) - f(x(0),0) - J(A + -)f(x(s),s)ds MfW

0

is a martingale for each initial condition x(O) x, where

2(x 0 t) a2
(1.7) A = bi(x,t) + xt ax.

1 1 ij 1 )

= differential generator of (1.5).

Let y(-) denote the generic element of Dr[0,-
) , let -W denote the contin-

uous functions on Rr x 10,-) with compact support and letP0'6 denote the subclass
0

whose mixed a t-derivatives and 8 x-derivatives are continuous. For f E f0 I, define

t

(1.8) VtO = foy(t),t) - f(y(0),0) - (A + -- )f(y(s) ,s)ds,

0

where A is an operator of the form (1.7) - but not necessarily satisfying the

Lipschitz and growth conditions. If for each x, there is a measure Px on D r[0, 0)

such that P {y(0W*x} - 1 and f ( is a P -martingale for each f 2 , then [P_} is
X - --

said to solve the martingale problem (of Strook and Varadhan [9]). If P is
x

unique for each x (as it is under the Lipschitz and growth condition cited above),

then the (P x induce a Markov process on the sample space Dr [0,0). Also, for
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each x, there is a B(-) such that under Px' the process satisfies (1.5) with

initial condition x.

The martingale formulation of SDEs is very useful in convergence studies.

The basic background theorems for our case [7J, [11 are proved by first showing tight-

ness of {UF (-)} and then showing that M (-) is a martingale for each f CA2
3

f0

when any weak limit U(-) is substituted for y(") and P is replaced by the measure
x

of 1(') and A is the operator (1.7) (in our case this specializes to the

operator of (1.4)). Below, an assumption concerning uniqueness of the solution

of the martingale problem will be made. This is needed, for otherwise the weak

limits o.f {U-(-)) might not be unique.

Truncation. For mathematical as well as practical reasons, it is helpful

to work with a truncated fXC}. The particular technical difficulty introduced
n

in the untruncated case will be discussed after the proof of Theorem 2. The

truncation introduced now alters the basic problem (1.2) and has nothing to do

with the "technical" truncation {X 'N I introduced in the first paragraph of Sec-
n

tion II. Suppose that we know real numbers x£,xu such that 8 (x£,x) Let

the bar I denote truncation. Then we replace (1.2) by

E 
X u

(1.9) Xn = (Xn - e sign[k(Xc)+Wn)n+1 nxn"
xt

Equation (1.9) is the actual algorithm whose asymptotic properties are to be

studied. There are continuous functions a (), b (.) such that a (x) = b (x)

C in [A£+C,x-el and both functions have values in [0,e] and are infinitely

differentiable functions of x except possibly at the points x +C, Xu-c, and

they are such that
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(1.10) X~ X a (Xe) I~k(XE)+(C>ol + b~ (XC) I~k(X )+E(<O1,
n+1 n C n n n- n n n

where I{-) is the indicator function.

II. Weak Convergence Theorems

Notation and a comment on tightness. The theorem below, taken from (71,

assumes tightness of {Y (.)} (or {U'(-))). Such tightness is not hard to get

under reasonable conditions by Theorem 2 of [7] if {Yc(-)} (or {UE(-)}) is

bounded. This will be further commented on below. We can bound the processes

by a truncation device which, since it is used only as a technical tool, does

not lose us any generality, and it will now be explained. Loosely speaking,

if the truncated processes defined below exhibit a suitable weak convergence,

then so do the {U (-)} and {Y (-)} as originally defined. Define S =
N

{xi lxl<N}, and let bN (x) be a function with values in [0,1], equal to unity in

SN , equal to zero out of SN+l and infinitely differentiable. Define Y ,N (and

for (1.2), Uc ' N) byn

~N ce1 N (EN()E (YcN',c) )Y
(2.1) Yn+l yN + [h(n ( n + r e n n + o(e) lbN

ucN = ucN - 1- ignk(Xc'N)+ n  (UN), EN cN

(2.2) Un+ n esg ~ &l
n+l n n n N n n n

E,N c,N c ,N
Let YN) and U (" denote the corresponding interpolations of {YNP and

n

n we use UcN (0) %C if JU' I < N, and set it equal to zero otherwise.

cN = U
Similarly for Y (0). Owing to the tightness of {Uc), this causes no problem.

n

We will see below that (2.2) is consistent with (1.9) - (1.10) in that the

weak limits of U (-), where U (-) is obtained from (1.9) - (1.10), are the same
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as those which Theorem 1 below gives us for (2.2), as E - 4, then'N + o.

Suppose for the moment that for each N, {yEN(-)} or {UE'N(')} converges

weakly to U N(-), a diffusion process (with differential operator denoted by A
N

whose part up to first escape from SN equals the part of U(.) up to first escape

from SN. Then if the solution to the martingale problem for operator A (A being the

differential generator of U(-)) is unique, U£(-) E U(-) weakly. Let E cN denote
n

c,N £expectation conditioned on {Y., i<n, ., i<n} or on {X.N , i<n, ii<n},
3. - 3. 3 - 3

depending on the case (2.1) or (2.2). EE is similarly defined when the superscript
n

N is absent.

The following is an adaptation of Theorem 1 of [7] to our case. It is

stated for the general case (1.1), (2.1).

Theorem 1. Let the differential generators A and AN have continuous coeffic-

ients, which are equal in SN for each N. Let the solution to the martingale

problem corresponding to operator A be unique on Dr[0,), for each x R Rr . For

each N and f(.,.) G _2, a dense set (sup norm) in A' let there be a sequence
0'

{fEN(.)} of random functions satisfying the following conditions. Each is

constant on each [nE,nc+c) interval, at ne it is measurable with respect to the

a-algebra induced by {YE'N, j<n, &E, j<n} and for each N cd -
J -

(2.3) sup E efN(en) + sup 1 E EC'Nf£'N (cn+c)-f£'N(end <C n
nE n,c

(2.4) Elf,'N(en)-f(Y,'N,en)l - 0 as c - 0 and cn = t,
n

ESNfEN(En+) _fC ,N (En)
(2.5) El n + AN)f(YE'N, n) - 0 as E 0 and en t.n

Then if {YCN(.), O<£< } is tight on D r[0 , ) for each N, where C0 doesn't depend
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on N, and Y6(0) converges in distribution to U(O) as E 0, we have

Y (. U(-) weakly, the unique solution to the martingale problem for operator

A with initial condition U(0).

The main burden of proof is in finding the functions {fE ,N(-)}, and the

method for this will be developed in Theorem 3. In our case, the {u"'N(-)} can

be shown to be tight via the method of [7], Theorem 2, which also makes use of

the functions {f,N (.)}.
Define the operator A6,N by A 'N f'N (n) 1 EEN[fF,N (n+c)_fc,N(cn)].

E n

AeN has the character of an infinitesimal operator. Considering the f E as

"test functions", the aim of the theorem is to find functions fc,N which are

close to the test functions and such that the action of A ,N fN is close to

N athe action of (A + -) on the test function f, for each N.

III. Tightness of {U6, small c, large n}-- n

Assumptions. Henceforth we stick to problem (1.9) or (1.10). Since we

treat the case where the {E } can depend on the {X6}, some information on then n

nature of the dependence must be provided. If { ) were a sequence of indepen-
n

dent random variables, then the assumptions and development would be much simpler.

But it is worthwhile to do the general case, since various forms of it occur

frequently. We assume that there is an auxiliary process {V1 such that
n

{{F lX I is a Markov process with a homogeneous transition function, and thatn-l n

n is a function of kn, Xn If X n were held fixed at a value x for all time,

then we have a Markov process which we denote by {((x)} and whose transition
n

probabilities are defined by the marginals of that of {Z _l,X }; i.e., given by
n- n

P{E (x)ECk (Ex } = (x),Xn =x}. Now a function W(x)
n n-l n n-i n n

L. . . IP L1 I I, I I II I I I I I-
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can be defined, where E (x) is obtained from (k (x),x) in the same way 
that C E

n n n
CE Cwas obtained from the pair (n ,X n). Define the "partial" £-step transition

function P{',','I'} for {n (x)} by

(3.1) P(Ej(x),L,Blx) = P{ j+(x)C BIZ (x),x}.

The conditions introduced below will be on the rate of convergence of certain £-

step transition functions to their limits as I w, and on the smoothness of the

transition functions. Some smoothness is required in order to "average out" the

discontinuity in the sign function. The symbol K(x) will be used to denote the set

[-k(x),-), and M denotes a constant whose value may change from usage to usage.

We use the following conditions, some in Theorem 2 and some in Theorem 3.

(Al) For each x, there is a unique measure P(.Ix) such that

I IP(1,9.,K(x) Ix) - P(K(x) Ix) I<~ M
£=0

uniformly in k and in x E [x,x ]. P(-Ix) would normally be the marginal

of the stationary measure of Qn (x)}.

(A2) For each x, P('Ix) has a density p(-Ix) which is symmetric about = 0.

Define g(x) = fsign[k(x)+&]p(CIx)dE. Let g(0) = 0. g(.) is differentiable

at x = 6 with gx () > 0 and there is a non-negative, non-decreasing func-

tion q(') such that g(x) > q(x) for x > 6 and g(x) < -q(x) for x < 6 and

q(x) 4 0 if x X 0. k(-) is continuously differentiable.

(A3) P([y,m)Ix) and P(k,,[y,-)jx) are continuously differentiable in x,y, the

continuity being uniform in Z > 0, and in x,y in bounded sets. Also (the
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subscripts x, y denote the derivatives)

I IP, (ZZK(x) Ix) - PX(K(x) Ix) i < M,

uniformly in and x E x~x .

(A4) Pfj n x) E J C -(x),xi is continuous in x in some neighborhood of 6

uniformly in C and C n Wx.

(M5) P(E,l,[-b,b]Ix) -) 0 as b - 0 uniformly in Z and in x in some neighborhood

of 0.

Let P edenote the regular conditional distribution of {E .(0), j.101 con-
n n+)

ditioned on ~(0) =the actual sample value at time n-1. Let E ( denoten-l ~ n- n

the corresponding regular conditional expectation. We need convergence of the

conditional expectations of certain functions. in particular,

(W6) There are functions q(m) which we write as (w'hich define the expectation

operator E

qm =-E sg (6) sign Em(6) =E sin ()sign P.+ (6)

F such that

Esign (e sign ~. (6) - q(m) as i

for all and n > .IloI q(m)I < - and

n-1 -M=l

I I E~ s)ign %(0) sign ~()-E sign %(e) sign (O~ < M
jmn Z=J+ln

for all ~ and n > 0.
n-
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Define

g Cx) f [a )(x)I{k(x)+&>O} - b Cx) I{k(x)+E<O}l p(EIx)d .

Note that g (-) has the properties ascribed to g(-) in (A2).

In Theorems 2 and 3, all O(.) and o(-) are uniform (in the O(-), o(-)

property) in all variables other than their argument.

Theorem 2. Assume (Al) - (A3). There is a sequence of integers N. C as e 0

and an c > 0 such that the double sequence [Un, n>N , E<E } is tight.
0 nt E 0

Proof. Part 1. The method is based on combination of a Liapunov function and

2
an averaging technique. Define V(x) = (x-0) . Note that

g Cx) -(x)P(K(x) Ix) + b (x) (1-P(K(x) Ix))

and

(3.2) Ev ( ) - V(X) V (XC)EC(Xc -x ) + O( 2 )
n n+l n x n n n+l n

(3.3) E (X, -X) = -a CX)P(M ,l,K(X)IX) + b (X)(-P( n-1,K(X')IXC)) '

n n n e n n-l nn cn n-inn

For small c,

E£(Xn-) [-a (Xn) I{k(Xn)+ 0}>OI + b (X5)I{k(Xn)+Fno0]
n n Cen n nk- C n n n

cE£(aC-XS)[-I{k £) 0&>} + I k(XC)+E 5 <0}].
nn n - n n

Thus
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E EV(XE )_V(XE) <EV (XE) [1 2P(i E ,l,K (XE) IXE)] + O(E2
n n+l n - x n n- n n

Now, we introduce a perturbation V E (n) to the Liapunov function. It is
1

used as a technical device to allow us to effectively replace the P which appear

in (3.3) by the "stationary" probabilities introduced in (Al). Define V 1(n) by

V E(n) = -2E V (XE)[PZ--+,(p IX') - n((')X) = SCIjnx n nFEnIjn nKn

V C(n) is well defined and 0(c) by (Al). V C(n) is introduced in order to average

out the noise 4n-l in (3.2). Using the definition of g(x), we have

(3.4) E' V1 (n+l)-V C(n) = -V (x ) [eg(Xc) + (l-2P(jE_,l,K(X')jX' j + T'ni+1l 1 x n 9.n n- n n

where

-T 2c E C(V (x E )IP(i ,j-nK(XC )IXC ) P(K(Xc )IXC )
J=n+l nL x n+l n n+l n+1 n+1 n+l

V(c[(i E-.+K(X C) IXE - PKX)X~lx n nlDn n 1 n' n n(JX)

We show that I T'I 0(E 2 .

First, we simplify T. Note that replacing X + in V x(XE )~ by X n

only alters the sum by 0(E 2. By making this replacement, writing 2V (X )
x n
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0(c) and using the Markov property (3.5)*, we have the equivalent form (3.6):

(3.5) P(t'_, Jfnl, C(XC) IXc E P(FC, J-n, K(XE)i
n- n n n n#

(3.6) -T' - 0(E) E ([P(E C, j-n, K,(Xc )IXE P(K(Xc )IXC )
jnln ntn+l n+l n+l n+l

- P(k E, j-n, K(XE:IXi - P(K(Xc)IX

By (W3) and the law of the mean, (3.6) equals (writing 6X n = n+l-X)

1

O(eIEC (XC -X£) I ds[P (E ' j - n ' K ( x ) j x ) - P (K(x}lx)]
n n+l n j=n+l f 0 nx)

0

where x = + s6Xc is used in evaluating the argument of the integral. But then n

last expression is O(C2 ) by (A3) and the fact that IXn -XnI = O(c).
n+l n

Part 2. Define V(n) = V(XnC) + V (n) and note that VC (n) 0(E). Sum-
n 1 1

marizing the calculations in Part 1 yields

(3.7) E V (+l)V (n) < - eV X )g (XC) + o(C .
n . x n c n

By (A2) and the fact that X E E ,x 3, there is a y > 0 such that

(3.8) ECVC (n+l)-Vc(n) < -Cy v(X
c ) + Oc21.

n n

*Recall that { (X-)' J>n, ni(X - )= -ni} is a Markov process with initial condi-

tion
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The V(XC) on the right side of (3.8) can be replaced by VC (n) without violating
n

the inequality. Consequently, EVC (n) < (l-cy)EV (n-i) + O(c 2 ), which implies

that EVe (n) - 0(c) for large n; i.e., that there is a N < c such that V (n) =

0(c) for n > N Since V~ (n) = O(c), EV(XC) = 0(c) for n > N also, and the
1 n C

theorem is proved. Q.E.D.

Note on the untruncated {X:} (x = - , xu = o). If we used (1.2) rather

than (1.9), then (3.7) would still hold, and we

would still have V (n) = 0(c). But, since (3.8) would not hold, we have not

resolved the problem of showing that (3.7) implies the existence of {N E such

that {Un, n>NE, small c) is tight.

IV. The Limit Theorem

Define

a2 I + 2-1 E8 sign 0 (0) sign (8).
J=l

Theorem 3. Let {n I be any sequence such that n > N . Under (Al) - (A6),

({c(-), e small, U (0) - Un ) converges weakly to the diffusion U(') defined by

(4.1) dU - -gx(8)Udt + odB.

Let n - qc" If Eqc E - as c - 0, then the weak limit is the stationary

solution of (4.1).
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Proof. Part 1. The main work of the proof is in constructing the fE and veri-

fying (2.3) - (2.5), where the operator A is the differential generator of (4.1).

Then if {UC (-), c small) is tight (where U (0) = UC ), the first conclusion will
n£

follow. The tightness proof will follow readily from Theorem 2 of [71 or [11]. The

assertion concerning stationarity is not hard to get, but the proof is omitted

owing to lack of space. Since (U I is tight, any subsequence contains a further
n
C

subsequence which converges weakly (i.e., in distribution). All limits will be

of the form (4.1) and can differ only in the initial condition U(0). Also, any

tight sequence {Uc(0)1 contains a subsequence which converges weakly to some

random variable. Thus, in view of Theorem 2, we can, without loss of generality,

assume that {Un } converges weakly to some random variable U(0). Noting that
n

IU 'N < N, we have X£'N E r+ 1,xu-e] and 6 G [x +E,x - ] for small e.
n n t CN

Suppose that c is small enough for the last sentence to hold. Then a (X ' ) =

b (XEN) = C. So the {UE 'Nn for the truncated problem (1.9) - (1.10) are actuallye n n

given by (2.2) for small c, and we use (2.2) henceforth.

Part 2. Fix f(-,-)C p0'2,3 = which is dense in .' as required by

Theorem 1. We drop the superscripts N for the sake of notational simplicity, but

we are actually working with (Uc'N,x£ 'N,u'N(.) ,X£'N( •) ,E"'N) and not withn n n

(U .... ) henceforth. We have
n

(4.2) ECf(U£" n+e)-f(Un ,ne) = ef (U nOn) + o(c) + f (U',nc)EC(U .-U)
n n+l n t n u n n n+1 n

£ 2
- u(Uc,neb (U,),

2 un N n
where

C E (U)[(U bN(U))re b 2P(jE_ ,lKe/U£I+ E)].

Actually, since u£'N(0) = Un  is the initial condition for Uc'N(. , all indices n
Cshould be n +n and the time argument nc should be ne-n C. But we "shift" to the

o n

origin for notational simplicity.
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The third term of (4.2) must be "averaged out", and this requirement determines

CC C C C
the form of the f . We will look for f (') of the form f (nE) Mf(U ,n) + f0 (ne)

+ fc(n:). For our choices, the f. will all be O(F) and (2.3) - (2.5) will hold.

Define

f C (n) = -r 2b, (UE)f (Uj'fle) l p(zc ,j-n+lK(x£) Ixe) -P(K(x£)Ix)).

0 N n u n n nn nn nj =n

C

By (Al), f0 (ne) is well defined. We have

(4.3) E' fc(nc+c)-f (n) = o(c) - third term of (4.2)(43 n+lf 0 0

+ r-b(C (c 1-2P (K (Xc) IXC)))pKx )XC)+

C C C C E C
-C E b(U )f (U ,nC) (P(E J-l, )Jx £ P(( n Xl n +
J=n+ nN n+l u n+1. nP ,JX+l n+l l nl

+ 2rc I Ecb (U )f (U ,zn:) P(tc .,J-n+l,K(Xc) IX£)-P(K(Xc)IX)3.
j=n+l n N n u n n. n n n n

Let Ti, T2 denote the last two terms. Noting that 2P(K(x)jx)-i - g(x), we can

write the third term on the right of (4.3) as

(4.4) - Fc b (U C)f (Uc~n)(Xc) = eb (UC)f (U c n~g (e)U C + o(E).
N n un n N n un x n

C E C C C~

Next, we simplify the T.. Write b (U )f (U ,ne) = b( (Ucn) +
V N n+l u n+l N n u n

(b (Un)fu(U ,nc))(U EI-U n) + 0(c), and split T into the three corresponding
N n iin Un+. n 1

sumst T C T +T +T NowT C 0( 3 / 2  - o(c). Noting (3.5), combine
1 11 12 13 13 =

C C
T C + T2 and use a differentiability argument such as used below (3.6), together

11 2



20.

with the fact that 1XE CXnE < C, to get that TlE + T2  o(C). The above sim-
n+l n11 2

plifications of (4.3) yield

(4.5) En fo(nc E)-f (n ) b )f (Un,nc)g (eu + o(c) - third term of (4.2)
n+l 0 0 N n U n x n

- 2'c" (b (UE)f (U nE)) EE(U. -U )[P(k ,jnIK(XE )1XE

-4 n u n, u n n+l n n n+l n+l

- P(K(XEC )IX£ )
n+l n+l

E
By another differentiability argument it can be shown that if the X in the P

n+l

terms of (4.5) are replaced by 0, then the sum changes only by o(E). Make this

replacement and note that P(K(8)I8) = 1/2. The revised sum in (4.5) is

(4.6) c(b (Un)f (UC ,ne)) I 2EE sign[k(Xn)+E][P( E,j-n,K(6)1) - -. + o(E).
N n u n u.jn~ n n n n 2j)=n+l

Next, it is not hard to see that by dropping the k(Xe) term in (4.6), the
n

sum changes only by o(c). To see this, use (Al) and the fact that IUCI < N+ln -

and also (implied by (AS)) E' -sign[kCU ) ¢n sign( )i - 0 as E - 0,

uniformly in and in X xx Let us drop this k(X n term. In addition,
n n U t

(A4) and (Al) imply that if the E n in (4.6) were replaced by E n (and n n by

n (8), &n (8)), then the sum would change by o(E) only. This last assertion

follows from the observation that, after the k(X n) is dropped, the jth summand is
n

actually E (sign E )E+ sign (0). Then note that
n n n+l j

zen sign (8) n E0 +
1 sign (0) - Ec sign EC E-6+E+1 sign 0)

. .Wn+l n n n J=n+I

n n -n Zn
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where by (Al), F(') is uniformly bounded in n, c. Now use (A4). Then we can

write

(4.7) (4.6) = o( + (b (Un )f (6) sign fu(0).N n u n' Uj=n+lnn

Part 3. We now "average out" the sum in (4.7). Definef Ue
f (ne) = c(b (UN)fu (UE ne)) ( (E sign (0)sign E (0)

u j=n =j+l

- E6 sign Ej(0) sign E (0)].

The sum is well defined by (A6). By an argument similar to that used in Part 2,

we can show that

E fC (n+c)-fC (ne) = - (4.7) + o(:)

n1

+ e(b (UE)f (UC,nC)) E sign %()sign ~()
N n u n u j=l0

Finally, summing up the calculations and cancelling terms whenever possible yields

If:(ne) + I' (nc I =

0c 1

E Cf C(nc+c)-f C(nc) = (C) + Eft(UE Cne) -cb (U,)f (UE ,n-)g MeUE
nfl n N n un x n

+ C(nc)b2 (Un) + c(bN(UnC)fu(UnC'n£))u I E  sign E0 (6) sign j(B).

S j=l

I
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Thus (2.3) - (2.5) hold for an operator AN which equals the operator A of (4.1)

in each SN.

Tightness of fu 'N(-), small £. The tightness proof of Theorem 2 of [71 or till

requires the construction of f E(ne) similar to those used here - for each N. But

since our f.(ne) are O(/), the conditions of the cited theorem hold and we get1

the tightness immediately in our case. Q.E.D.

Remark. In more general cases the fE ,N are chosen in a similar way:

f£,N = f + small perturbation. First we obtain an expansion (up to o()) of

c,Nf N -
E "(Yn n +) - f(y N' en). Then check which terms in the expansion need to be

n n+1 n

averaged out - or replaced by an "average value". These will be the terms which
do not depend solely on Yn ,en. Then the sum f is introduced (centered about

a "mean value" - which is the averaged replacement for the undesirable term).

Continue as in the proof, building up the operator AN step by step.
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